The actual position of an object at arbitrary time t with speed v along the Y axis is D(t)={ x0, vt, z0 }
Its observed psition is B(t) = { x0, y, z0 }
The time it took light to get to the observer from B(t) is sqrt( x0², y², z0² ) / c
So y = v * ( t - sqrt( x0² + y(t)² +
z0² ) / c )
We can solve this for y as follows.
For convenicne, let ß = v/c
arrange things so we can use ß
y = v * ( t - ( sqrt( x0² + y(t)² + z0² ) / c ) )
yc/v – ct = - ( sqrt( x0² + y(t)² + z0² )
(v/c)yc/v
– (v/c)ct
= - (v/c)(
sqrt( x0²
+ y(t)² +
z0²
)
y – vt = -
(v/c)(
sqrt( x0²
+ y(t)² +
z0² )
replace v with vc/c
y – (v/c)ct = - (v/c)(
sqrt( x0²
+ y(t)² +
z0²
)
substitute ß
y
- ßct = - ß sqrt(x0² + z0² + y²)
square
both sides
y²
- 2ßct y + ß²c²t² = ß² (x0²
+ z0² + y²)
distribute
the ß² on the right
y²
- 2ßct y + ß²c²t² = ß²x0²
+ ß²z0² + ß²y²
move
all to left
y²
- 2 ßct y + ß²c²t² - ß²x0²
- ß²z0² – ß²y² = 0
rearrange
y²–
ß²y² - 2 ßct y + ß²c²t² -
ß²x0² – ß²z0²
= 0
extract
ß² from part of it
ß²c²t²
- ß²x0² – ß²z0²
= ß²( c²t² – x0² –
z0²)
extract
y² from part of it
y²–
ß²y² = y²– y²ß²= y² (
1 – ß² )
so
we have
y²
( 1 – ß² ) - 2 ßct y + ß²( c²t²
– x0² – z0²) = 0
multiply
by 1/(1 – ß²)
note
that
y²
( 1 – ß² ) * 1/(1 – ß²) = y²
-
2 ßcty * 1/(1 – ß²) = - 2 ß/(1 –
ß²)cty
ß²(
c²t² – x0² – z0²)
* 1/(1 – ß²) = ß²/(1 – ß²)(
c²t² – x0² – z0²)
so
we have
y²
- 2 ß/(1 – ß²)ct y + ß²/(1 –
ß²)( c²t² – x0² –
z0²) = 0
move
y² to left
y²
= 2 ß/(1 – ß²)ct y - ß²/(1 –
ß²)( c²t² – x0² –
z0²)
recall
y² =
ya - b =
0 solves as y = ( ±sqrt(a²-4b)
+ a ) / 2
for
this we use:
a
: 2 ß/(1 – ß²)ct
a²
: 4 ß²/((1 – ß²)(1 – ß²))c²t²
b
: ß²/(1 – ß²)( c²t² – x0²
– z0²)
(
±sqrt(
4 ß²/((1 – ß²)(1 – ß²))c²t²
- 4 ß²/(1 – ß²)( c²t² –
x0² – z0²) ) + 2 ß/(1 –
ß²)ct ) / 2
remove
/2
( ±sqrt(
ß²/((1 – ß²)(1 – ß²))c²t²
- ß²/(1 – ß²)( c²t² – x0²
– z0²) ) + ß/(1 – ß²)ct
)
rearrange
ß/(1
– ß²)ct±sqrt(
ß²/((1 – ß²)(1 – ß²))c²t²
+ ß²/(1 – ß²)( c²t² – x0²
– z0²) )
extract
ß/(1 – ß²) from the sqrt() by putting (1 –
ß²)²/ ß² on each term in the sqrt
note
that (1 – ß²)²/ ß² is (1 – ß²)
* (1 – ß²) * 1/ ß
ß²/((1
– ß²)(1 – ß²))c²t² +
ß²/(1 – ß²)( c²t² – x0²
– z0²)
rewtite
ß²
* 1/(1 – ß²) * 1/(1 – ß²) * c²t²
+ ß² * 1/(1 – ß²) * ( c²t² –
x0² – z0²)
put
it in
(1
– ß²) * (1 – ß²) * 1/ ß²
* ß² * 1/(1 – ß²) * 1/(1 –
ß²) * c²t²
+
(1 – ß²) * (1 – ß²) * 1/ ß²
* ß² * 1/(1 – ß²) * ( c²t²
– x0² – z0²)
cancel
out
c²t²
+ (1 – ß²) * ( c²t² – x0²
– z0²)
put
the extracted ß/(1 – ß²) on the out side now
ß/(1
– ß²) * ±sqrt(c²t²
- (1 – ß²)( c²t² – x0²
– z0²))
so we have
ß/(1
– ß²)ct + ß/(1 – ß²) *
±sqrt(c²t²
- (1 – ß²)( c²t² – x0²
– z0²))
undistribte
ß/(1 – ß²)
ß/(1
– ß²)( ct ±sqrt(c²t²
- (1 – ß²)( c²t² – x0²
– z0²)) )
rearange
the contents of sqrt() some
c²t²
- (1 – ß²)( c²t² – x0²
– z0²)
distribute
the minus sign
c²t²
+ (-1 + ß²)( c²t² – x0² –
z0²)
distribute
(-1 + ß²)
c²t²
+ (-1 + ß²)c²t² - (-1 + ß²)x0²
– (-1 + ß²)z0²
distribute
the minus sign
c²t²
+ (-1 + ß²)c²t² + (1 – ß²)x0²
+ (1 – ß²)z0²
distribute
c²t²
c²t²
+ -c²t² + ß²c²t² + (1 – ß²)x0²
+ (1 – ß²)z0²
c²t²
cancels out
ß²c²t²+
(1 – ß²)x0² + (1 – ß²)z0²
Which
have now have inside the sqrt()
so
we have
ß/(1
– ß²)( ct ±sqrt(ß²c²t²+
(1 – ß²)x0² + (1 – ß²)z0²)
)
We
only want the negative root, the other is a nonsensical position
farther ahead of the current position.
replacing
ß with v/c we get
(v/c)/(1
– (v/c)²)( ct -sqrt((v/c)²c²t²+ (1 –
(v/c)²)x0² + (1 – (v/c)²)z0²)
)
change
(v/c)² to v²/c²
(v/c)/(1
– v²/c²)( ct -sqrt(v²/c²*c²t²+ (1
– v²/c²)x0² + (1 – v²/c²)z0²)
) )
cancel
c
(v/c)/(1
– v²/c²)( ct -sqrt(v²t²+ (1 –
v²/c²)x0² + (1 – v²/c²)z0²))
)
rewrite
(v/c)
* 1/(1 – v²/c²) * ( ct - sqrt(v²t²+ (1 –
v²/c²)(x0²+z0²)) ) )
multiply
(v/c) in 2 parts of the equation
(v/c)/(1
– v²/c²) = 1/(1 – v/c)
(
(v/c)ct - (v/c)sqrt(v²t²+ (1 – v²/c²)x0²)
) ) = ( vt - (v/c)sqrt(v²t²+ (1 – v²/c²)(x0²+z0²))
) )
so we have
1/(1
– v/c) * ( vt - (v/c)sqrt(v²t²+ (1 –
v²/c²)(x0²+z0²)) )
The
current postion of the object D(t)is { x0, vt, z0 }
using
yr for vt we have coordinates for B(T)
{x0,
1/(1-v²/c²) (yr - v/c sqrt(yr ²
+ (x0²+z0²)(1-v²/c²)),z0}